
Schedulability Analysis of Heterogeneous Systems for
Performance Message Sequence Chart

Frank Slomka, Jürgen Zant, Lennard Lambert
University of Erlangen-Nuremberg

Department of Computer Architecture and Performance Evaluation,
Martensstr. 3, 91058 Erlangen, Germany

{slomka, lambert}@informatik.uni-erlangen.de

Abstract
Telecommunication systems are often specified in the

standardized languages SDL and MSC. These languag-
es allow only the specification of pure functional as-
pects. To remedy this problem we have combined the
language MSC and performance aspects in Perfor-
mance MSC (PMSC). From a PMSC specification a task
model can be derived that includes beside computation
times, periods and deadlines of tasks, also absolute start
times of tasks and dependencies between tasks. This al-
lows us to apply an extended schedulability analysis of
asynchronous tasks on heterogeneous target architec-
tures. We present the analysis technique and demon-
strate with a small example, how the algorithm can be
used for the real-time analysis of a cordless telephone.

 1 Introduction
In the telecommunication area the specification lan-

guages SDL (Specification and Description Language,
[9]) and MSC (Message Sequence Chart, [10]) are wide-
ly used. The main application of the languages is the de-
velopment, formal specification, and validation of
telecommunication protocols. In MSC typically use-
cases are formalized while in SDL the full functional be-
havior is described by extended finite state machines.
With this application domain in mind it is comprehensi-
ble that the main focus of SDL is not the design of real-
time systems.

However, SDL and MSC are also used for the specifi-
cation and the design of real-time systems [3]. Using
SDL for the design of real-time systems exposes the dis-
advantages of SDL and MSC for applications like mo-
tor-controlling or other embedded systems. For
examples SDL or MSC are defined without constructs to
describe timing constraints or implementation aspects.
To use SDL and MSC as languages for hardware/soft-
ware codesign, we extended the language SDL with
constructs to support the specification of timing, cost
and resource constraints [14]. MSC is also extended by
extensions to specify performance requirements [6]. The
extensions to the standard languages are called SDL*

and PMSC (fig. 1). With SDL* and PMSC a complete
implementation design specification for mixed hard-
ware/software systems can be defined [12].

A set of tools is being developed in Erlangen to sup-
port the automatic hardware and software implementa-
tion of SDL/MSC specified systems. To gain reasonable
price of the system the configuration, e.g. the mapping

of functional system modules, like tasks or processes, to
architecture components (processors, ASICs etc.) and
the scheduling strategy, is optimized at compile-time.
Due to the huge state space of the system, heuristic op-
timization algorithms must be applied and the user can
prescribe some optimization decisions manually. Thus
while the timing constraints are fulfilled the total system
costs are minimized. The basis of the optimization pro-
cess is a model-based performance evaluator based on a
PMSC specification.

PMSC follows the 3-phase-methodology [8] where the
model of the system is divided into two submodels,
namely the load and the machine model. The load model
in PMSC describes how the load of the system is struc-
tured by an MSC, where all tasks (see fig. 1: τ1, τ2, τ3,
τ4) define some load for the machines. Moreover the in-
tensity of the load is defined by the absolute start times
of an MSC, when all head tasks are enabled to start (fig.
1, τ1). The load model of a PMSC specification can be
transformed into its corresponding task graph [11]. The
machine model describes the performance of the ma-
chines, their topology and the scheduling algorithms

${markbegin A}
P1

τ1

τ3

P2

τ2

τ4

P3

${markend B}
${span(A,B) < 100 ms}

SETUPreq

DATAreq

 Figure 1: Example of a PMSC specification

This research has been funded by the Deutsche Forschungsgemeinschaft (DFG) under grant He 1408/4-1 and grant SFB182, B3

used. When mapping load components on machine com-
ponents and giving the load components a priority, the
full system model is obtained.

In the paper we discuss an algorithm for the schedula-
bility analysis of heterogeneous systems with depencies
between tasks. The algorithm calculates the worst case
response times of each instance of a system task without
a simulation of a complete system trace. With this tech-
nique it is possible to analyze the response times of spo-
radic and periodic tasks. The goal is to use this task
model for an automatic derivation from a PMSC speci-
fication.

The paper is organized as follows: the next section de-
scribes the related work. In section 3 we discuss the ba-
sic ideas from literature for a codesign approach with
schedulability analysis for periodic tasks. An introduc-
tion to the extended schedulability analysis is given in
section 4. An example how the analysis algorithm works
is given in section 5. Finally we will conclude the paper.

 2 Related Work
An overview of schedulability analysis is given in [4].

The algorithms described in [4] are based on a model
with preempted, independent and periodic tasks located
on a single processor.

The model was extended by [1] to define an algorithm
for the schedulability analysis and the redefinition of
task priorities on a heterogeneous multiprocessor archi-
tecture. Additionally a constructive algorithm is given to
calculate an HW/SW partitioning based on the parame-
ters computed by the schedulability analysis.

Another approach to hardware/software partitioning
based on schedulability analysis with periodic and inde-
pendent tasks is described in [13]. An extension is given
to include communication times to schedulability analy-
sis, and an algorithm for HW/SW partitioning is present-
ed.

An idea for codesign with periodic tasks or processes
is found in [2]. The algorithm extends data-dominated
codesign approaches by a reactive process model to sup-
port the design of heterogeneous systems.

A real-time verification based on schedulability anal-
ysis for aperiodic tasks is described in [7]. This approach
calculates, whether all tasks in the model guarantee their
deadlines. In contrast to [1] and [13] the algorithm only
finds deadline violations and does not calculate any met-
ric values for the next step of the optimizer. Another dis-
advantage to use this algorithm for HW/SW codesign, is
that the algorithm only supports the verification of mes-
sage-coupled systems.

 3 Schedulability Analysis
Functional correctness of a real time system depends

on the correctness of the implementation and on the ful-
fillment of the system‘s timing constraints. An impor-
tant factor of the design of real-time systems is to find
the optimal priority assignment of all tasks with the low-

est implementation costs. The optimal priority assign-
ment results in a system that holds its deadlines on the
slowest possible machine. In a heterogeneous environ-
ment the relative speed of the components is not
changed.

 3.1 Response Time Analysis
The response time analysis is based on a simple pro-

cess model (see [4]). Each task (τ) of the set of tasks (B),
is completely independent and all tasks are periodic,
with known periods (T). Furthermore each task has a
given worst-case execution time (C) and a deadline (D)
when the execution of the task has to end. So each task
τi is characterized by a tuple (Ci, Ti, Di, pi) where Ci, Ti,
Di ∈ |R+ are given in time units, and where pi ∈ |N is de-
fined as the priority of the task τi. The priorities of the
tasks are directly proportional to the priority number p.
For each of these tupel we can define an abbreviation
X(τi) = Xi, X ∈{C, T, D, p}. This means for example
that C(τ1) = C1 and D(τ2) = D2.

Usually the priority of each τ is given by the deadline
monotonic priority assignment algorithm which is opti-
mal on an one-processor system. Deadline-monotonic
means that the priority p is direct proportional to the re-
ciprocal of the deadline D. Therefore the task with the
shortest deadline will be scheduled with the highest pri-
ority. Defining a set of higher prior tasks Hp(τ) = {τ’ ∈
B | p(τ’) > p(τ)} the response time of a task is

(see [1]), with

If R(τ) ≤ D(τ) is true for all tasks, the system will satisfy
the specified timing constraints.

 3.2 Codesign with Schedulability Analysis
To schedule tasks in real-time multiprocessor systems,

the deadline monotonic priority assignment algorithm is
not optimal. An optimal priority assignment for tasks on
heterogeneous architectures is given in [1]: In contrast to
the approach described above the tasks τ and τ' may run
on different processors using a timed shared resource,
e.g a shared memory block. Under the assumption that τ'
is active on the same resource as τ the interference I(τ,
τ') is an upper bound for the time interval that τ has to
wait for τ'. With a set M = {µ1,..., µn}, where µi ∈ Μ are
time-shared resources of the system the interference is
formally defined by:

with U(τ) = {M' ⊆ Μ| ∃ Μ'' ⊆ Μ, Μ' ∩ Μ'' ≠ ∅ ∧ CΜ’’(τ)
≠ 0} and CΜ’(τ) is the time when τ is using the particular
combination of the resources M'. For example, if the
tasks τ and τ' are running on the same processor, the in-
terference I(τ, τ') = C(τ') is a special case of equation (3).
Using the interference for all tasks with a higher priority

R(τ) = min {t > 0 | = 1}
R τ t,()

t
---------------- (1)

R τ t,() C τ() t
T τ’()------------ C τ’()

τ’ Hp τ()∈
∑+= (2)

I τ τ’,() C
M’ τ’()

M’ U τ()∈

∑= (3)

as τ during a time interval t, the worst case-response
time can be calculated by:

The calculation of the response time of a task R(τ) is cal-
culated as in equation (1). For the calculation of the pri-
ority order of the tasks on a heterogeneous architecture,
the minimal required speedup (mrs) for a task τ is de-
fined in [1]. The mrs S(τ) of a task τ describes how much
faster the system has to execute such that τ has the long-
est response time under the assumption that it holds its
deadline. Given an initial priority order for all tasks we
can calculate for every task the mrs S(τ):

The optimal system has the property that max {S(τ) | τ
∈ B} is minimal. As shown in [1] this metric can be also
used to calculate the hardware/software partitioning of
the system.

 4 Extensions to Schedulability Analysis
The technique discussed in section 3.2, can only use

periodic and independent tasks with different priorities
to analyze the priority order of a given set B. For the
analysis of PMSC specifications an analysis technique is
introduced that supports absolute start times of tasks and
dependencies of tasks. Note that the analysis of the exe-
cution path that results if only the worst case computa-
tion times of all tasks are considered is not sufficient for
heterogeneous systems. Because of this phenomenon we
have to consider best case execution times.

 4.1 Extended Task Model
Since the analysis has to consider all occurrences of a

task, we distinguish the set of all task instances nτ ∈
Βinst and the set of task definitions τ ∈ Βtask. Both sets
are the disjoint union of sets, that result from three dif-
ferent types of tasks:

• Periodic Tasks () with a period T and a defined
starting point s(0), when the first instance of
starts. With this we can calculate the starting point
of each instance of by: s() = s() + nT
with n ∈ |N0. The set of periodic tasks is and
the set of instances of this tasks is (,

). The following sets are defined similar.
• Triggered Tasks (): tasks which are triggered by

other tasks (,).
• Sporadic Tasks (), which have only one defined

starting point s(0), but no period (,
).

All tasks are equipped by a best case execution time
 and and a best case starting time sbest and

an ending time e(τ) = s(τ) + R(τ). Analogous to the in-
terference I, a lower bound Ibest can be computed. Addi-
tionally for each task a set N, which contains all tasks
triggered by τ, is defined. From N a successor relation

can be derived: succ(nτ,nτ') :⇔ τ' ∈N(τ). In the ap-
proach described in this paper we do not consider multi-

ple predecessors of a task, thus we require: ∀τ: ∀(τ1,τ2)
succ (τ1,τ) ∧ succ (τ2,τ) ⇒ τ1 = τ2. To have a consistent
specification it is required that the transitive clousure
succ+ of the relation succ is acyclic. With succ* we de-
note the reflexive-transitive clousure of succ and succ*
(nτ) = {nτ' | succ*(nτ,nτ')} (see fig. 2). For each instance
a root instance is given by: root(nτ) = nτ': succ*(nτ',nτ) ∧
¬∃nτ'': succ (nτ'', nτ'). sbest(

nτ) can now be defined for-
mally:

with Pre(nτ) = succ*(root(nτ))\succ*(nτ). Furthermore
the predicate ↓ is introduced to indicate that a value is
defined for a task, e.g. s(0τ) ↓ is true for all periodical
and sporadic tasks. The opposite of ↓ is ↑.

The fig. 2 basically represents the task model of the
PMSC shown in fig. 1. In comparison to fig. 1 the task
τ5 is added.

In this model communication can be modeled by com-
munication tasks, which are a special form of triggered
tasks, where the computation time depends on the sys-
tems topology and the mapping of normal tasks. It is out
of the scope of this paper to add communication tasks to
the model.

 4.2 Analysis of the Extended Task Model
The analysis considers all occurrences of tasks in the

correct timely order. If more instances start at the same
absolute time, the one with the highest priority is consid-
ered first. For the task an upper bound for its execution
time is calculated with a similar metric as in section 3.2.
We first introduce two different sets of instances:

, . contains all instances,
with a higher as nτ that have a starting point prior to nτ
and have an estimated later endpoint than the best start-
ing point of nτ. = { kτ' ∈ Βinst | p(kτ') > p(nτ)
∧ s(kτ')↓ ∧ s(kτ') ≤ s(nτ) ∧ sbest(

nτ) < e(kτ')}.
contains all instances with a higher priority then nτ that
may start while nτ is active, thus the instance kτ has a
worst case starting point later then nτ or is a triggered in-
stance with an unknown starting point and predecessors
that allow the instance kτ to start while nτ is active.

 = {kτ' ∈ Βinst | p(kτ') > p(nτ) ∧ ((s(kτ')↓ ⇒
s(kτ') > s(nτ)) ∧ (s(kτ')↑ ⇒ (∀kτ'' : succ+(kτ'', kτ') ⇒

R τ t,() C τ() t
T τ’()------------ I τ τ’,()

τ’ Hp τ()∈
∑+= (4)

S τ() min R τ t,()
t

---------------- 0 t D τ()≤<()
 
 
 

= (5)

τ
τ τ

0
τ

τ
n

τ τ
n

τ
0

B
τ
task

B
τ
inst τ B

τ
task∈

τ
n

B
τ
inst∈

τ̃
τ̃ B

τ̃
task∈ τ̃

n
B

τ̃
inst∈

τ̂
τ̂ τ̂ B

τ̂
task∈

τ̂
n

B
τ̂
inst∈

Cbest Cbest
M

Figure 2: The extended task model

s(0τ1)

0τ1
0τ2

0τ3
0τ4

0τ5
1τ5

s(0τ5) s(1τ5)e(0τ5)

e(0τ2)

e(0τ4)e(0τ3)

e(0τ1)
s(0τ3) s(0τ4)

succ*(τ1)

p

t

s(0τ2)

sbest τn() s root τn()() C τ’()best

τk
’ Pre τn()∈
∑+= (6)

Hpe
inst τn() Hpa

inst τn() Hpe
inst τn()

Hpe
inst τn()

Hpa
inst τn()

Hpa
inst τn()

(p(kτ’’) > p(nτ) ∨ Ιbest(
nτ,kτ’’) = 0)))}. For instances kτ’ in

 the upper bound of the interference is given by
the interference of τ and τ’ and the maximal overlapping
of the two instances

Both sets are shown in fig. 3, where is valid if
the best case interference of kτ5 and nτ do use the same
resources, and if they do not. The earliest
point of preemption of the instance nτ by another in-
stance kτ’ after nτ has started is given by δ:

Using the number of interrupts that may occur from kτ’
within the first t time units after nτ has started:

we can estimate the worst case response time of an in-
stance nτ which is maximally interrupted in the interval
t by:

With these equations, an algorithm for the schedulability
analysis of aperiodic tasks can be formulated. First, the
task with the highest priority and the earliest starting
point is chosen from the set Ba = {nτ ∈ Binst | s(nτ) ↓}.
The set Ba contains all tasks with a starting point. Then
the worst-case-response time of task nτ is calculated.
The starting points of all tasks kτ’ ∈N(nτ) which are trig-
gered by nτ are calculated by s(kτ’) = e(nτ).

All tasks with starting points calculated by the equa-
tion above are now elements of the set Ba and we can
calculate the worst-case-execution time of these tasks.
Because in equation (10) the value t is used to determine
the number of interrupts of a task, S(nτ) can be calculate
with equation (5). After calculating the worst-case-re-
sponse time of an instance nτ, nτ is eliminated from the
set Ba and moved to the set Be, which contains all tasks
with calculated endpoints.

Crucial for the algorithm is the stop condition, which
is calculated dynamically. Let the least common multi-
plier (lcm) of all periods be then
the system must at least be analyzed till the absolute
time thus all sporadic tasks are in the interval:

Where n0 ∈ |N is the least smallest number that satisfies

the unequation. Since from Tmust on no sporadic tasks
are in the system, the behavior is repeated every Tc time
units. These cycles with period Tc may differ from each
other caused by tasks that have to continue their worst
case execution from earlier cycles. In the algorithm we

keep these worst case properties in the set Acp. Every el-
ement in Acp is a set that contains the tasks and the time
intervals they overlap with the next cycle. If the algo-
rithm has already computed a cycle with the same or
stricter worst case properties the algorithm stops. If no
violation of a deadline has been found, the system holds
its deadlines. To compare the worst case properties of
the sets in Acp we define a new operator ∈≤ : Cp ∈≤ Αcp
:⇔ ∃As ∈ Acp: ∀x ∈ Cp: ∃a ∈ As: Π1(x) = Π1(a) ∧
Π2(x) ≤ Π2(a), where Πi is the projection on the ith com-
ponent of a tuple. The worst case properties of Cp are
satisfied by Acp, if an element in Acp contains at least the
same tasks as in Cp and all time intervals of the tasks in
the element are greater or equal than in Cp. Since one cy-
cle has been found with a greater interference from the
previous cycle than the current cycle, the worst case re-
sponse times for the cycles following the current cycle
are smaller or equal then the worst case response times
computed before. The algorithm is finite since no task
can arbitrarily be delayed because of its deadline.

 5 Example
The algorithm has been implemented in Java. In order

to demonstrate how the algorithm works, we consider a
cordless DECT telephone (Digital Enhanced Cordless
Telephone). The DECT protocol specification [5] de-
scribes the levels one, two and three of the OSI reference

kτ1

kτ2
kτ3

p

kτ4

kτ5

kτ6

 Figure 3: Definition of the sets ,Hpe
inst τn() Hpa

inst τn()
t

kτ4

nτs(nτ)

Hpa
inst τn()

Hpe
inst τn()

H’pa
inst τn()

Hpe
inst τn()

Ĩ τn τk
',() min I τn τk

',() e τk
'() sbest τn()–,()= (7)

Hpa
inst τn()

H’pa
inst τn()

δ τn τk
’,() sbest τ’

k() s τn()–()= (8)

n τn τk
’ t, ,() max sign t δ τn τ’

k,()–() 0,()= (9)

R τ t,n() C τn() Ĩ τn τ'
k,()

τk
’ Hpe

ins t τn()∈

∑ n τn τ'
k

t, ,()I τn τ'
k,()

τ’
k

Hpa
ins t τn()∈

∑+ +=
 (10)

Tc lcm
τi Bτ∈

T τi()()=

Tmust n0Tc max
τ̂ B

τ̂
i ns t∈

i
s τ̂

i
() D τi()

τi succ∗ τ̂
i

()∈

∑+ 
 >= (11)

boolean test_schedulability(B) begin
Be := ∅; Ba := ; Tc= lcm(Ti); Tmust = n0Tc;
Αcp= ∅; Bcp := ∅;
do forever begin // function terminates with return value

Ba’ := {nτ ∈ Ba | ∀kτ’ ∈ Ba: s(nτ) ≤ s(kτ’)};
nτ := choose from {nτ ∈ Ba’ | ∀kτ’ ∈ Ba’: p(nτ) ≥ p(kτ’)};
if (s(nτ) > Tmust ∧ Bcp = ∅) then

Bcp := {nτ ∈ Binst| (e(nτ)↓ ⇒ s(nτ) < Tmust < e(nτ)) ∧
(e(nτ)↑ ⇒ s(root(nτ)) < Tmust)};

 R(τ) = min {t > 0 | R(τ,t)/t = 1};
if (R(nτ) > D(nτ)) then return false; // system may violate D
e(nτ) := s(nτ) + R(nτ);
Be := Be ∪ {nτ}; Ba := Ba \ {

nτ};
if (nτ ∈Bcp) then begin

if (∀kτ ∈Bcp : e(kτ)↓) then begin
Cp(Tmust) := {(τ, e(nτ) - Tmust) |

nτ ∈ Bcp};
if (Cp(Tmust) ∈≤ Αcp) then return true;
Αcp := Αcp ∪ Cp(Tmust);
Tmust := Tmust + Tc; Bcp := ∅;

end if;
end if;
if (N(nτ) ≠ ∅) then begin

for each kτ’ ∈ N(nτ) begin
s(kτ’) := e(nτ);
Ba := Ba ∪ {kτ’};

end for each;
end if;

end do forever;
end test_schedulability;

B
τ τ̂,
inst

 Figure 4: Algorithm

//system satisfies
//all deadlines

model for wireless speech and data services and sup-
ports high traffic loads. It is designed to provide large
cordless PAPX installations or wireless LANs and is
also available for domestic consumers.

In our example we consider a small DECT mobile
part. All software-tasks of the system are running on a
8051 microcontroller (note that in this case I(τ, τ’) =
C(τ’)). The microcontroller is connected to an ASIC,
which implements the burst mode logic for the radio in-
terface of the telephone.

If the telephone receives data, the task RV (Receive),
which runs on the ASIC, writes the data to the registers
of the ASIC. Then the burst-mode logic interrupts the
microcontroller. In dependence from the logical chan-
nel, the controller starts an interrupt service routine
(ISR). The ISR has an interference I(RV, ISR) = 0.1
with the hardware task, because both tasks are using the
registers of the ASIC. The ISR copies the data from the
registers of the ASIC to the microcontroller‘s memory.
In table 1 it is shown how an analysis of the receipt of a
network layer (NWK) message can be done by the algo-
rithm. First the ISR calls six times the MAC (Medium
Access Control) and the DLC (Data Link Control). After
the DLC received six fragments of the NWK layer mes-
sage the DLC calls the NWK layer, which is used to pro-
vide services like the call-setup of a connection. In table
1 the communication between the tasks is marked by an
backslash (e.g. ISR1.1 → MAC1.1 → DLC1.1 → NWK1.1)
and x = 0,1,2,3...; c = 3,5,7; d = 4,6,8,...; as factors to de-
scribe the different intervals when a task has to start.

Additionally to this full synchronous tasks we add an
asynchronous interrupt by the user. The ISR4 routine
reads the input key, e.g. the pressing of the key talk by
the user, and sends the data to the task APP (applica-

tion), which represents the program code for the user in-
terface. Then the application starts a call-setup
controlled by the network layer (NWK4). The NWK
layer sends a new message via the DLC and MAC layer
to the fixed part of the DECT system. The sending of
this message overlaps with the receiving of other mes-
sages.

 6 Conclusion
We have shown, how a schedulability analysis, which

includes a codesign approach for periodic tasks, can be
extended for the analysis of aperiodic tasks and depen-
cies between tasks. Because the algorithm allows to cal-
culate worst-case-response times of tasks which are
running on heterogeneous architectures and the task in-
teraction for different use-case-scenarios can be speci-
fied by MSCs, the described algorithm is potentially a
powerful evaluation algorithm for a system synthesis
tool for SDL/MSC specified systems.

 7 References
[1] J.Axelsson. Hardware/software partitioning aiming a fulfilment

of real-time constraints. Journal of Systems Architecture,
Vol.42, No. 6&7, December 1996

[2] T. Benner, R. Ernst. An Approach to Mixed Systems Co-Synthe-
sis. 5th International Workshop on Hardware/Software Code-
sign. IEEE Computer Society Press, 1997

[3] R. Braek, O. Haugen. Engineering Real Time Systems. Prentice
Hall, 1993

[4] A. Burns, A. Wellings. Real-Time Systems and Programming
Languages, Addison Wesley. 2nd edition, 1996

[5] ETSI. DIN ETS 300-175, Radio Equipment and Systems (RES),
Digital Enhanced Cordless Telecomunications (DECT) Com-
mon Interface. ETSI, 1993

[6] N. Faltin, L. Lambert, A. Mitschele-Thiel, F. Slomka. An Anno-
tational Extension of Message Sequence Charts to Support Per-
formance Engineering. In SDL‘97, Time for Testing, SDL, MSC
and Trends, Proceedings of the eight SDL-Forum, Elsevier Sci-
ence Publishers, Sept. 1997.

[7] K. Gresser. An Event Model for Deadline Verification of Hard
Real-Time Systems. IEEE Procedings 5th Euromicro Workshop
on Real Time Systems, Oulu, Finland, 1993

[8] U. Herzog. Performance Evaluation and Formal Description.
Advanced Computer Technology, Proc. Reliable Systems and
Applications, IEEE Computer Society Press, May 1991

[9] ITU-T. Recommendation Z.100. Specification and Description
Language. ITU, 1993

[10] ITU-T. Z.120, Message Sequence Chart. ITU, 1996
[11] L. Lambert. Bewertung von MSC-Spezifikationen mit Task-

Graphen. Formale Beschreibungstechniken für verteilte Syste-
me, 7. GI/ITG-Fachgespräch, Berlin, Juni 1997.

[12] A. Mitschele-Thiel, F. Slomka. A Methodology for Hardware/
Software Codesign of Real-Time Systems with SDL/MSC. Proc.
International Workshop on Conjoint Systems Engineering
(CONSYSE), to appear by IT Press, 1998

[13] Y. Shin, K. Choi. Enforcing Schedulability of Multi-Task Sys-
tems by Hardware-Software Codesign. 5th International Work-
shop on Hardware/Software Codesign, IEEE Computer Society
Press, 1996

[14] S. Spitz, F. Slomka, M. Dörfel. SDL* - An Annotated Specifica-
tion Language for Engineering Multimedia Communication Sys-
tems. 6th Open Workshop On High Speed Networks, Institut für
Nachrichtenvermittlung und Datenverarbeitung, Universität
Stuttgart, 1997

τ p T D s C R S

RV 7 0.417 0.2 0.417 0.2 0.2 1
ISR1.2 6 0 0.8 0 0.4 0.4 0.5
MAC1.2 4 / 3 /0.4 1.5 1.5 0.5
ISR1.1 6 0 0.8 2.1 0.4 0.585 0.73
ISR4 6 0 0.8 2.4 0.4 0.785 0.98
MAC1.1 4 / 3 /2.69 1.5 2 0.67
APP 1 / 90 /3.19 5 29.3 0.33
DLC1.1 3 / 16 /4.69 5 7.6 0.48
SLI 5 10 1 x5 0.5 0.5 0.5
NWL1.1 2 / 50 /12.29 10 12.6 0.25
ISR1.3 6 0 0.8 10 0.4 0.6 0.75
MAC1.3 4 / 3 /10.6 1.5 1.5 0.5
ISR1.4 6 0 0.8 20 0.4 0.6 0.75
MAC1.4 4 / 3 /20.6 1.5 1.5 0.5
NWL4 2 / 50 /32.49 10 20.2 0.4
ISR2.1 6 20 0.8 c0 0.4 0.6 0.75
MAC2.1 4 / 3 /c0.6 1.5 1.5 0.5
ISR2.2 6 20 0.8 d0 0.4 0.6 0.75
MAC2.2 4 / 3 /d0.4 1.5 1.5 0.5
DLC2.2 3 / 16 /d2.1 5 5.5 0.34
DLC4 3 / 16 /52.69 5 5.5 0.34
MAC4 4 / 3 /58.19 1.5 1.5 0.5

Table 1: Tasks of a DECT telephone (all times in ms).

